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概要
現代幾何学の基礎対象である滑らかな多様体に対し、その接空間上の多重線形交代形式として
微分形式が定義される. 微分形式のなす空間は豊富な代数構造を持ち, 関わる諸定理は多様体の
構造を調べるうえで重要な役割を果たすことが知られている. 多様体の離散化の一つに単体複体
があり、組み合わせ微分形式は単体複体上で定義される微分形式である. この概念は 2002 年に
Formanにより導入され, 多様体上の微分形式が関わる諸定理の離散類似の構成が行われている.

本研究もその流れに沿うものであり, 組み合わせ微分形式から得られる de Rham コホモロジー
群と, 離散Morse関数から構成される離散Morseホモロジー群の関係について述べる.

1 導入
1.1 準備
本研究で扱う基礎対象は有限抽象単体複体である. 有限抽象単体複体とは, 高次元の多面体を貼り

合わせて得られる図形である単体複体を抽象化した概念であり, 次のように定義される.

定義 1.1 (有限抽象単体複体). V を有限集合, Σを V の部分集合族とする. 組K = (V,Σ)が以下の
条件を満たすとき, K を有限抽象単体複体という.

• 任意の v ∈ V に対し, 1点集合 {v}は Σに属する.

• 空集合 ∅は Σの元ではない.

• 任意の部分集合 σ ∈ Σに対し, σ の任意の空でない部分集合 ρ ⊂ σ は Σに属する.

K が有限抽象単体複体であるとき, 部分集合族 Σの元 σ を単体という. 単体 σ が {v0, v1, . . . vp}と
表されるとき, σ は p次元単体であるという. 特に 0次元単体を頂点という. 単体 σ, ρ ∈ Σに対して
包含関係 ρ ⊂ σ が成立するとき, ρを σ の面といい, ρ ≺ σ と表す. 有限抽象単体複体 K の次元を,

K に含まれる単体の次数の最大値で定める.

例 1.2. V = {v0, v1, v2, v3},Σ = 2V \{∅}とすると, K = (V,Σ)は 3次元抽象単体複体である. K
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は四面体として図示することができ, 各頂点が 0次元単体, 各辺が 1次元単体, 各面が 2次元単体, 四
面体の中身が 3次元単体となっている (図 1).

例 1.3. V = {v0, v1, v2, v3, v4, v5, v6}とし, Σ1 を図 2のようにとる. このとき {v1, v2, v3, v6} ∈ Σ1

に対してその三点からなる部分集合が Σ1 に含まれないため, K1 = (V,Σ1) は抽象単体複体ではな
い. 一方 Σ2 を図 3のようにとると, K2 = (V,Σ2)は 2次元抽象単体複体となる. このように, 高次
元の多面体の各面を三角形で分割した対象が単体複体である.

図 1 単体複体の例 図 2 単体複体でない例 図 3 単体複体の例

次に有限抽象単体複体 K から得られるチェイン複体とホモロジー群について述べる. まず単体に
向きを導入する. K の p次元単体 σ = {v0, v1, . . . , vp} ∈ K に対し, 置換 s ∈ Sp+1 による頂点の並
び替え s(σ) = {vj0 , vj1 , . . . , vjp} ∈ K を考える. σ と s(σ)が偶置換で写り合うときに σ と s(σ)は
同じ向きであるといい, 奇置換で写り合うときに σ と s(σ)は逆の向きであるという. 定義より一つ
の単体に対してその向きは二種類ある. 向き付けられた単体を 〈σ〉と表すこととし, 〈σ〉と 〈σ̃〉が逆
の向きであるときは 〈σ〉 = −〈σ̃〉と表すこととする.

定義 1.4 (チェイン群). pを整数とする. 有限抽象単体複体 K に対し, K の p次元単体に任意に向
きを取る. K の向き付けられた p次元単体全体の集合により生成される自由 R加群を Cp(K)と表
し, K の p次チェイン群という. p < 0または p > dimK であるとき, Cp(K) = 0とする. チェイン
群の直和 ⊕p∈ZCp(K)を C∗(K)と表すこととする.

定義 1.5 (境界作用素). チェイン群の次数を下げる写像 ∂ : Cp(K) → Cp−1(K) を, 任意の p 単体
〈σ〉 = 〈v0, v1, . . . , vp〉に対し対応

∂〈σ〉 = Σp
i=0(−1)i〈v0, . . . vi−1, v̌i, vi+1, . . . vp〉

の線形拡張により定義する. ここで v̌i は vi を除くことを意味する.

補題 1.6. 線形写像 ∂ は境界作用素となる. すなわち, ∂ ◦ ∂ = 0となる.

補題 1.6より線形空間と境界作用素による系列 (C∗(K), ∂)

0 → CdimK(K)
∂→ · · · ∂→ Cp+1(K)

∂→ Cp(K)
∂→ Cp−1(K)

∂→ · · · ∂→ C0(K) → 0

を得る.



定義 1.7 (ホモロジー群). 商線形空間 Ker(∂ : Cp(K) → Cp−1(K))/Im(∂ : Cp+1(K) → Cp(K))を
K の p次ホモロジー群といい, Hp(K)と表す.

K の p次チェイン群の双対空間 Cp(K)と境界作用素 ∂ の双対写像 δ : Cp(K) → Cp+1(K)から,

系列 (C∗(K), δ)を得て同様に商線形空間を考えることができる.

定義 1.8 (コホモロジー群). 商線形空間 Ker(δ : Cp(K) → Cp+1(K))/Im(δ : Cp−1(K) → Cp(K))

をK の p次コホモロジー群といい, Hp(K)と表す.

また, K の p次チェイン群 Cp(K)に内積を導入する. K の p次元単体 〈σ〉, 〈τ〉に対し, その内積
〈〈σ〉, 〈τ〉〉 ∈ Rを

〈〈σ〉, 〈τ〉〉 =


1 (〈σ〉 = 〈τ〉のとき)

−1 (〈σ〉 = −〈τ〉のとき)

0 (それ以外)

と定める. チェイン群の内積 〈·, ·〉 : Cp(K)× Cp(K) → Rを単体の内積の線形拡張により定義する.

1.2 組み合わせ微分形式
以下 K を有限抽象単体複体, r を任意の非負整数とする. 本節では K 上の微分形式である組み合
わせ微分形式を定義する. 組み合わせ微分形式は, Formanによって Novikov-Morse理論の離散類似
を構成するために導入された概念である. 組み合わせ微分形式は [1]において胞体複体に対し定義さ
れるが, 本研究では計算の簡略化のため, また将来的なコンピュータでの応用を視野に入れ, 対象を胞
体複体から単体複体に限定し考える.

定義 1.9 (組み合わせ微分形式 [1]). K のチェイン群の間の線形写像 ω : C∗(K) → C∗(K)が以下の
条件を満たすとき, ω をK 上の r 次組み合わせ微分形式という.

• ω は局所的である. すなわち, ω は入れた単体の面の一次結合を対応させる写像である.

• ω の次数は r である. すなわち, 任意の整数 pに対して ω(Cp(K)) ⊂ Cp−r(K)となる.

K 上の r 次組み合わせ微分形式全体の集合を Ωr(K)と表すこととする.

例 1.10. 任意の有限抽象単体複体K に対し, 境界作用素 ∂ は 1次組み合わせ微分形式である. また,

K の p次元単体 〈σ〉とその面であるような p− r 次元単体 〈ρ〉に対し, e
⟨σ⟩
⟨ρ⟩ : C∗(K) → C∗(K)を

e
⟨σ⟩
⟨ρ⟩ (〈τ〉) =


〈ρ〉 (〈τ〉 = 〈σ〉のとき)

−〈ρ〉 (〈τ〉 = −〈σ〉のとき)

0 (それ以外)

と定めると, e
⟨σ⟩
⟨ρ⟩ は r 次組み合わせ微分形式となる.

例 1.11. 例 1.2における 3次元抽象単体複体 K 上の 3次組み合わせ微分形式全体の集合 Ω3(K)を
考えると,

Ω3(K) = Span{e⟨v0,v1,v2,v3⟩
⟨v0⟩ , e

⟨v0,v1,v2,v3⟩
⟨v1⟩ , e

⟨v0,v1,v2,v3⟩
⟨v2⟩ , e

⟨v0,v1,v2,v3⟩
⟨v3⟩ }



となる. よって Ω3(K)は 4次元の線形空間である. 同様に, Ω2(K)は 18次元の線形空間, Ω1(K)は
28次元の線形空間, Ω0(K)は 15次元の線形空間となることが確かめられる.

命題 1.12 (次元公理). 一点のみからなる 0次元抽象単体複体 {v}に対し, その組み合わせ de Rham

コホモロジー群は
Hr(Ω∗({v})) =

{
R (r = 0のとき)

0 (r 6= 0のとき)

となる.

定義 1.13 (外微分). r 次組み合わせ微分形式 ω ∈ Ωr(K)に対し, その外微分 dω ∈ Ωr+1(K)を

dω = ω ◦ ∂ − (−1)r∂ ◦ ω

により定める.

注意 1.14. 上記の外微分 dの定義は, [1]に記載されている定義から符号を変更している. 符号を変
更しても得られる主要な結果は変わらないことが確かめられている.

補題 1.15 ([1]). dは余境界作用素となる. すなわち, d ◦ d = 0となる.

定義 1.16 (組み合わせ de Rham コホモロジー群). 組み合わせ微分形式によるコチェイン複体
(Ω∗(K), d) から得られるコホモロジー群 Hr(Ω∗(K)) を K の r 次組み合わせ de Rham コホモロ
ジー群という.

定理 1.17 (離散版 de Rhamの定理 [1]). K の組み合わせ de Rhamコホモロジー群Hr(Ω∗(K))は
K のコホモロジー群 Hr(K) と同型である.

二つの滑らかな多様体M,N とその間の滑らかな写像 f : M → N に対し, 微分形式の引き戻し写
像 f∗ : Ω∗(N) → Ω∗(M)を定義することができる. 組み合わせ微分形式に対して, 以下のように離
散類似を構成することができる.

定義 1.18 (単体写像). K = (VK ,ΣK), L = (VL,ΣL) を有限抽象単体複体とする. このとき, 頂点
間の写像 f : VK → VL であって, K の単体の頂点 v0, v1, . . . , vp に対し f(v0), f(v1), . . . , f(vp)が L

の単体の頂点となるとき, f を単体写像という.

注意 1.19. 上記の定義において, f(v0), f(v1), . . . , f(vp) ∈ VL が相異なる頂点である必要はない.

単体写像 f に対し,

f∗(〈v0, v1, . . . , vp〉) =

{
〈f(v0), f(v1), . . . , f(vp)〉 (f(v0), f(v1), . . . , f(vp)が相異なるとき)

0 (それ以外)

と定めることで, チェイン群の間の線形写像 f∗ : Cp(K) → Cp(L)を得る. この f∗ を単体写像 f に
よる誘導線形写像という.



単体写像 f : K → Lと L上の r 次組み合わせ微分形式 ω ∈ Ωr(L)に対し, 次のように K 上の r

次組み合わせ微分形式 f∗(ω) ∈ Ωr(K)を構成することができる.

f∗ : Ωr(L) −→ Ωr(K)

∈ ∈

ω 7−→ f∗(ω) : C∗(K) −→ C∗−r(K)

f∗ ↓ ↑ f̃

f∗(C∗(K))
−→

ω|f∗(C∗(K)) ω(f∗(C∗(K)))
∩ ∩

C∗(L)
−→
ω C∗−r(L)

ただし, f̃ は像 ω(f∗(C∗(K)))上でのみ定義される誘導線形写像 f∗ の疑似的な逆写像である.

定義 1.20 (引き戻し写像). 単体写像 f : K → Lに対し, f∗ : Ωr(L) → Ωr(K)を単体写像 f による
組み合わせ微分形式の引き戻し写像という.

補題 1.21. 引き戻し写像に対し, 次が成立する.

• f∗ はコチェイン写像である. すなわち, 外微分 dに対し d ◦ f∗ = f∗ ◦ dとなる.

• 恒等写像の引き戻し写像 (idK)∗ は恒等写像 idΩr(K) と一致する.

• 二つの単体写像 f : K → L, g : L → S に対し, (g ◦ f)∗ = f∗ ◦ g∗ となる.

特に K が Lの部分複体であるとき, つまり K が Lの部分集合であって抽象単体複体の構造を持
つとき, 単体写像として包含写像 ι : K → Lをとることができる. このとき, 対 (L,K)上の r次組み
合わせ微分形式を

Ωr(L,K) = Kerι∗

により定める. 補題 1.21 より引き戻し写像 ι∗ はコチェイン写像であるので, (Ω∗(L,K), d) は
(Ω∗(L), d)の部分複体となる.

定義 1.22 (組み合わせ相対 de Rhamコホモロジー群). 対 (L,K)上の組み合わせ微分形式によるコ
チェイン複体 (Ω∗(L,K), d)から得られるコホモロジー群 Hr(Ω∗(L,K))を, r 次組み合わせ双対 de

Rhamコホモロジー群という.

命題 1.23 (完全性公理). 抽象単体複体 Lとその部分複体K に対し, 系列

0 → Ωr(L,K) → Ωr(L) → Ωr(K) → 0

は完全である. この短完全系列から組み合わせ de Rhamコホモロジー群の長完全系列

· · · → Hr(Ω∗(L,K)) → Hr(Ω∗(L)) → Hr(Ω∗(K)) → Hr+1(Ω∗(L,K)) → · · ·

を得る.

命題 1.24 (切除公理). 抽象単体複体 J とその部分複体 K,L に対し, 包含写像 ι : (K,K ∩ L) →
(K ∪ L,L)の引き戻し写像 ι∗ により Hr(Ω∗(K ∪ L,L))と Hr(Ω∗(K,K ∩ L))は同型となる.



1.3 離散Morse関数
閉多様体に対して確立されているMorse理論について, その諸定理の離散類似が抽象単体複体に対

して構成されている. 本節ではその一部の紹介を行う.

定義 1.25 (離散Morse関数 [2]). 有限抽象単体複体K 上の関数 f : K → Rが離散Morse関数であ
るとは, 任意の p次元単体 σ ∈ K に対して以下が成立するときにいう.

• #{τ (p+1) ∈ K | τ � σ かつ f(τ) ≤ f(σ)} ≤ 1

• #{ρ(p−1) ∈ K | ρ ≺ σ かつ f(ρ) ≥ f(σ)} ≤ 1

離散 Morse 関数 f に対し, 上記の二つの集合の濃度が 0 となるような単体 σ ∈ K を臨界単体とい
い, その指数を単体の次元で定める. 臨界単体の f による像を臨界値という. 指数 pの臨界単体全体
の集合により生成された自由 R加群をM f

p (K)と表すこととする.

例 1.26. 任意の抽象単体複体K に対し, 各単体の次元を割り当てる関数 f : K → R, f(σ) = dimσ

は離散Morse関数となる (図 4). このとき, K の任意の単体は臨界単体となる.

例 1.27. 2次元抽象単体複体 K に対して図 5のように関数 f1 : K → Rを与える. このとき, 1次
元単体 {v1, v2} ∈ K に対して

#{ρ(0) ∈ K | ρ ≺ {v1, v2} かつ f1(ρ) ≥ f1({v1, v2})} = #{{v1}, {v2}} = 2 > 1

となるため, f1 は離散Morse関数ではない. 図 6のように関数 f2 : K → Rを与えると, f2 は離散
Morse 関数となる. 臨界単体は {v1}, {v2, v0}, {v0, v1, v2} ∈ K であり, その指数はそれぞれ 0, 1, 2

である.

図 4 離散Morse関数の例 図 5 離散Morse関数でない例 図 6 離散Morse関数の例

以下 f をK 上の離散Morse関数とする. f の勾配ベクトル場 Vf を次のように与える.

定義 1.28 (勾配ベクトル場 [2]). 任意の p次元単体 〈σ〉 ∈ K に対し, Vf (〈σ〉) ∈ Cp+1(K)を

Vf (〈σ〉) =

{
−〈∂〈τ〉, 〈σ〉〉〈τ〉 (τ � σかつ f(τ) ≤ f(σ)となるτ (p+1) ∈ K が存在するとき)

0 (それ以外)

と定める. この線形拡張により定まる Vf : Cp(K) → Cp+1(K)を離散Morse関数 f の勾配ベクトル



場という. 勾配ベクトル場 Vf に付随する勾配流 Φf : Cp(K) → Cp(K)を
Φf = idCp(K) + ∂ ◦ Vf + Vf ◦ ∂

と定める.

例 1.29. 離散Morse関数 f の勾配ベクトル場 Vf は, 関数値が下がる方向を指し示す矢印として図
示される. 例 1.26における離散Morse関数 f の勾配ベクトル場 Vf は零写像であり, 零ベクトル場
と捉えることができる. 例 1.27における離散Morse関数 f2 の勾配ベクトル場 Vf2 は, 図 7のように
図示できる.

図 7 勾配ベクトル場の例

f の勾配流 Φf に対し, 勾配流で不変なチェインの集合

C
Φf
p (K) = {c ∈ Cp(K)|Φfc = c}

を考えることができる. 勾配流の定義より Φf はチェイン写像であるため, (C
Φf
∗ (K), ∂) は

(C∗(K), ∂)の部分複体となる. これにより, ホモロジー群 H∗(C
Φf
∗ (K))を得る.

定理 1.30 ([2]). 勾配流 Φf により構成されるホモロジー群Hr(C
Φf
∗ (K))とホモロジー群Hr(K)は

同型となる.

更に次の定理より, 臨界単体により生成される空間M f
∗ (K)のホモロジー群を考えることができる.

定理 1.31 ([2]). 勾配流によるチェイン群 C
Φf
p (K) と臨界単体により生成される自由加群M f

p (K)

は同型となる.

系 1.32 ([2]). 臨界単体によるホモロジー群 Hr(M
f
∗ (K))はホモロジー群 Hr(K)と同型である.

定義 1.33 (離散 Morse ホモロジー群). 臨界単体によるホモロジー群 Hr(M
f
∗ (K)) を r 次離散

Morseホモロジー群という.

2 これまでの結果
2.1 結果
定理 1.17 と系 1.32 を通して, 組み合わせ微分形式による de Rham コホモロジー群 H∗(Ω∗(K))

と離散 Morse 関数によるホモロジー群 H∗(M
f
∗ (K)) の双対空間の間接的な同型を示すことができ



る. 一方, 滑らかな場合の離散類似として両者にペアリングによる具体的な対応付けを与えたい.

定義 2.1 (積分). 有限抽象単体複体 K 上の p次組み合わせ微分形式 ω ∈ Ωp(K)に対し, K の p次
元単体 〈σ〉上での ω の積分を ∫

⟨σ⟩
ω =

∑
⟨v⟩(0)≺⟨σ⟩

〈ω(〈σ〉), 〈v〉〉

と定める.

定義 2.2. f を離散 Morse 関数とする. p 次組み合わせ微分形式の空間 Ωp(K) と p 次チェイン群
Cp(K) の間のペアリング (·, ·) : Ωp(K)× Cp(K) → Rを

(ω, 〈σ〉) =
∫
⟨σ⟩

ω

の線形拡張で定める.

命題 2.3. ペアリング (·, ·) : Ω∗(K) × C∗(K) → Rについて, 次が成立する. p− 1次組み合わせ微
分形式 ω と p次元単体 〈σ〉に対し,

(dω, 〈σ〉) = (ω, ∂〈σ〉).

系 2.4 (離散版 Stokesの定理). K の最大次元の組み合わせ微分形式 ω に対し,∫
K

dω =

∫
∂K

ω

が成立する.

注意 2.5. 系 2.4において, K上での積分 ∫
K
をKの最大次元の単体の総和 c =

∑
i〈σi〉 ∈ CdimK(K)

上での積分 ∫
c
で定めている. また ∂K 上での積分 ∫

∂K
は ∂c ∈ CdimK−1(K)上での積分 ∫

∂c
で定め

ている.

補題 2.6. ペアリング (·, ·) : Ω∗(K) × C∗(K) → R は組み合わせ de Rham コホモロジー群
Hp(Ω∗(K)) とホモロジー群 Hp(C∗(K)) の間のペアリング (·, ·) : Hp(Ω∗(K)) ×Hp(C∗(K)) → R
を誘導する.

2.2 今後の課題
f を離散Morse関数とする. 定義 2.2のペアリング (·, ·) : Ω∗(K)× C∗(K) → Rに対し, f の臨界
単体によるチェイン群M f

∗ (K)への制限

(·, ·) : Ω∗(K)× M f
∗ (K) → R

を考える. 補題 2.6より上記のペアリングをホモロジーレベルに落とすことができ,

(·, ·) : H∗(Ω∗(K))×H∗(M
f
∗ (K)) → R



を得る. このペアリングが双対的なペアリングであること, つまり非退化であることを示したい. チェ
インレベルのペアリングは双対的にならないことが確かめられており, 現在はホモロジーレベルのペ
アリングの性質を確かめている.

ペアリングの双対性を示す方法として, 直接的な計算に加えて以下の手法も併せて検討している.

離散Morse関数 f の臨界値の集合は有限集合であり, {c1, c2, . . . , cs} ⊂ Rと表すことができる. こ
こで, c1, c2, . . . , cs は添え字に応じて値が単調増加するように並べ替えたものとし, 重複がある場合
は一つのみ残すこととする.

定義 2.7 (レベル部分複体). i = 1, 2, . . . , sに対してレベル部分複体Kci を,

Kci =
∪

f(σ)≤ci

∪
ρ⪯σ

ρ

と定める.

このように定義されたレベル部分複体 Kci は K の部分複体となる. これにより, 離散Morse関数
f によるK の部分複体の増大列

Kc1 ⊂ Kc2 ⊂ . . .Kcs ⊂ K

を得る.

例 2.8. 例 1.26において, f の臨界値の集合は {0, 1, . . . , dimK}であり, 各レベル部分複体 Ki は i

切片と呼ばれる K から自然に定まる部分複体と一致する (i = 0, 1, . . . , dimK). 例 1.27 において,

f2 の臨界値の集合は {1, 4, 5}であり, レベル部分複体K1,K4,K5 は以下のように図示できる.

図 8 離散Morse関数によるフィルトレーション

これにより対 (Kci ,Kci−1)上での組み合わせ相対 de Rhamコホモロジー群 Hr(Ω∗(Kci ,Kci−1))

を考えることができる (i = 2, 3, . . . , s). 現在はこの組み合わせ相対 de Rhamコホモロジー群の性質
を調べており, 十分な結果が得られればペアリングの双対性の証明への寄与が期待される.
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